Nom de la discipline	Techniques de Compression du Signal Vocal
Domaine d'étude	Inginerie Electronique et de Télécommunications
Spécialisation	Master : Traitement des Signaux et des Images
Code de la discipline	52331711
Titulaire du cours	Prof.dr.ing. Mircea Giurgiu – Mircea.Giurgiu@com.utcluj.ro
Collaborateurs	
Département	Télécommunications
Faculté	Electronique, Télécommunications et Technologie de l'Information

III	Spécialisé optionelle	2	-	2	-	28	-	28	-	74	-	130	5	Examen
		[h/ sem.]	S	[h/sem.]		s [h/ sem.	S	[h/ sem.]		mes Stude Etude individuelle	Stages Pratiques	TOTAL	Points de crédit	n
Sem	Type discipline	Cours	Ap	plicat	ions	Cour	Ap	plicati	ions	e				Vérificatio

Connaissances nécessaires

• traitement numérique des signaux • connaissances de traitement de la parole • la théorie de l'information et du codage • les technique de transmission des données • les notions principales de la théorie des systèmes • les fondements des communications fixes et mobiles • les codes correcteurs d'erreurs • la modélisation des lignes de communication

A. Contenu du cours (titres)

Cours 1 – Introduction dans les systèmes de codage et compression au bas débit pour le signal de vocal. Les standards: G.721, G.722, G.723, MPEG, FS-1015, FS-1016, etc. et leur taxonomie.

Cours 2 – La modélisation paramétrique et statistique de signal de parole. La cuantization vectorielle des paramètres LPC et LSF. Systèmes des codage/décodage SIVP si SAVQ.

Cours 3 – Les techniques de compression au bas débit par les méthodes d'analyse et synthèse. Les techniques de compression: MPE, RPE-LTP, CELP, VSELP.

Cours 4 – Systèmes de compression rapide au bas débit: CELP, LD-CELP. Applications pour VoIP et GSM.

Cours 5 – Méthodes d'interpolation du signal dans les systèmes de codage/décodage de la parole.

Cours 6 - Méthodes de compression utilisant le principe de codage sinusoïdale.

Cours 7 – La compression par modèles MBE et MELP. Le standard INMARSAT. MBE au bas débit.

Cours 8 – Techniques de compression du signal vocal au débit variable et multi mode.

Cours 9 - La codage du signal audio en standard MPEG. MPEG Layer I & II. Le standard MP3.

Cours 10 – La compression du signal vocal par transformation ondelette. Le codage entropique.

Cours 11 – La compression par cuantization vectorielle. VQ, GS-VQ. Les algorithmes: LBG, SELBG, HVSQ.

Cours 12 – Le contrôle des erreurs dans les systèmes de transmission du signal vocal. L'optimisation de codage de la source de signal.

Cours 13 - Méthodes pour réduire le bruit et l'écho par filtrage adaptif (LMS, nLMS, RLS, DWT).

Cours 14 – La synthèse de cours.

B. Contenu des travaux applicatifs et projets

- TP 1: Introduction pratique
- TP 2: La development et évaluation expérimentale du codeur ADPCM en standard G.721.
- TP 3: Le vocodeur LPC en standard FS-1015 (travaux pratique par expérimenter les influences des paramètres de codage).
- TP 4: Le codeur CELP en standard FS-1016
- TP 5: L'évaluation des performances des codeurs ADPCM/CELP dans un scénario de type VoIP.
- TP 6: Le development et l'expérimentation d'un codeur sinusoïdale.
- TP 7: Méthodes de l'évaluation des performances de compression pour les codeurs MBE si MELP.
- TP 8: La modélisation psycho acoustique et expérimentes en Matlab pour un codeur MPEG.
- TP 9: L'analyse de signal vocal par transforme ondelette.
- TP 10: La compression du signal vocal par transformation ondelette et maximisation d'information utile.
- TP 11: L'évaluation du codage de type WPT.

- TP 12: L'évaluation expérimentale des algorithmes de VQ.
- TP 13: Le development et expérimentation des algorithmes de filtrage adaptif LMS, nLMS, RLS pour réduire le bruit et l'écho.
- TP 14: Evaluation finale.

C. Etude individuel

Les étudiants vont recevoir du matériel d'étude sous forme électronique (a voir la liste de références).

Etude individuel	Cours	Tutoriaux	Devoirs	Projets	Examen	Total
Temps [heures]	28	3	10	30	3	74

Références

- 1) T. Quatrieri, "Discrete-Time Speech Signal Processing: Principles and Practice", Prentice Hall, 2001.
- 2) D. Childers, "Speech Processing and Synthesis Toolboxes", John Wiley, 2000
- 3) A. M. Kondoz, "Digital Speech: Coding for Low Bit Rate Communication Systems", Wiley Publ., 2004
- 4) M. Tatham, "Developments in Speech Synthesis", Wiley Publ., 2005.
- 5) R. Duboite, M. Kunt, "Traitement de la parole", Presses Politechnique Universitaire Romande, Lausanne, 1990
- 6) W. Chu, "Speech Coding Algorithms", Wiley Publishers, 2003
- 7) M. Giurgiu, "Compresia Datelor Audio pentru Aplicatii Multimedia", Ed. Risoprint, 2003.

Compétences acquises

Connaissances théoriques

- • connaissances de la structure et des caractéristiques pour chacune standard de compression du signal vocal
- connaissance des méthodes principales pour modéliser la source de signal (LPC, LSF, MPE, RPE-LTP, CELP)
- connaissance des techniques complexes pour compression le signal vocal (CELP, VSELP, ACELP, MPEG, VO)
- la connaissance des méthodes de filtrage adaptifs des signaux et leurs application pratique (LMS, nLMS)

Connaissances pratiques

- choisir et appliquer la méthode adéquate pour la compression du signal vocal dans un système de communication spécifique
- developer en Matlab ou outre logiciel les algorithmes spécifiques pour la compression et codage du signal de parole
- implémenter l'algorithmes nécessaires for la correction des erreurs dans les systèmes de codage/décodage du signal vocal
- sera capable de projeter et developer un système complète de compression du signal vocal utilisant une des techniques étudiée.

Evaluation	
Mode d'evaluation	Examen écrit, testes, évaluation continu des travaux pratiques et des connaissances théorique.
Composantes de la note finale	Travaux pratique (TP), Résultats expérimentales (RE), Examen Final (EF).
Formule de calcul de la note	
finale	15% TP + 15% RE + 70% EF.

Informations additionnales		
Sujets similaire	Traitement de la Parole (IV TST), Anal Parole (Master TTM).	yse, Synthèse et Reconnaissance de la
Base matérielle	Laboratoire: salle 508 Obs (15 places)	Equipements spécifiques: ordinateurs et logiciel spécialise.

Reponsable: Prof.dr.ing. Mircea Giurgiu