Nom de la discipline	Techniques avancées pour le traitement des images et de la
	vidéo
Domaine d'étude	Ingénierie électronique et télécommunications
Master	Traitement du signal et des images - mastère francophone
Code de la discipline	52330111
Titulaire du cours	Conf.dr.ing. Romulus TEREBEŞ, Romulus.Terebes@com.utcluj.ro
Collaborateurs	Dr.ing. Bogdan BELEAN, Bogdan.Belean@com.utcluj.ro
Département	Communications
Faculté	Electronique, Télécommunications et Technologie de l'information

Sem.	Type			Cours Applications		Etude individuelle	-AL	dits	Vérification				
		[h/semaine.] [h/semestre.]						T01	Cre				
			S	L	Р		ഗ	L	Ρ		•		
1	Spécialité	3	-	1	-	42	-	14	-	74	130	5	Epreuve écrite

Compétences acquises

Connaissances théoriques

Techniques non linéaires d'amélioration et restauration des images ◆ Equations aux dérivées partielles pour le traitement d'images: modèles de diffusion scalaire et tensorielle, filtres de choc ◆ Calcul variationnel ◆ Techniques avancées pour la segmentation d'images ◆ Traitements d'images dans le domaine des transformées ◆ Contours actifs ◆ Techniques de reconstruction et visualisation 3D ◆ Détection du mouvement dans les séquences d'images ◆ Restauration et amélioration des séquences vidéo ◆ Implantation en temps réel

Aptitudes :

A l'issue de ce cours les étudiants seront capables de :

- comprendre les principaux type des EDPs et leurs applications dans le traitement numérique des images et des séquences vidéo
- comprendre les fondements théoriques des méthodes récentes pour la restauration, amélioration et segmentation des images et des séguences vidéo
- implanter des algorithmes numériques pour les modèles continus des EDPs
- concevoir et implanter des logiciels pour la segmentation, amélioration et restauration des images et des séquences vidéo

Connaissances pratiques

- modélisation mathématique et implantation pratique en C/C++
- interprétation statistique des résultats

Connaissances nécessaires - connaissances acquises aux cours de Traitement du Signal et Traitement numérique des images

A. C	Cours	
1	Introduction. Objectifs. Représentation des images numériques. Modèles de représentation des images dans l'espace couleur. Classification du bruit. Filtres linéaires pour la restauration et amélioration des images.	2 heures
2	Filtres non linéaires pour la restauration et amélioration des images : filtres médians scalaires et vectoriels, filtre médians pondérées, filtres moyenneurs non- linéaires, filtres statistiques, la technique « mean shift » , filtrage sélectif des régions (les filtre de Nagao et Kuwahara)	2 heures
3	Techniques avancées de restauration et amélioration d'images en utilisant le formalisme des équations aux dérivées partielles (EDP): l'équation de diffusion isotrope, l'équation de diffusion anisotrope Perona et Malik, modèles de lissage sélectif.	2 heures
4	Techniques avancées de restauration et amélioration d'images en utilisant le formalisme EDP: filtres de choc, filtres de lissage sélectif directionnel, mouvement sous la courbure moyenne. Résolutions numériques	2 heures
5	Techniques avancées de restauration et amélioration d'images en utilisant le formalisme EDP: diffusion tensorielle : le tenseur de structure les modèles de Weickert, modèles directionnels	2 heures
6	Modèles de diffusion fondés sur la théorie de déformation des courbes fermées. Calcul variationnel en traitement d'images	2 heures

7	Méthodes de traitement en utilisant la technique "fast marching" et les courbes de	2 heures
	niveau d'une image. Autres applications du formalisme EDP en traitement d'images	
8	Morphologie mathématique numérique et continue	2 heures
9	Techniques de filtrage et de restauration dans le domaine des transformées Fourier	2 heures
	et wavelet	
10	Techniques avancées de segmentation en utilisant les contours actifs.	2 heures
10 11	Techniques avancées de segmentation en utilisant les contours actifs. La technique « inpainting» de restauration des images et des séquences vidéo	2 heures 2 heures
11	La technique « inpainting» de restauration des images et des séquences vidéo	2 heures

B1.	B1. Applications – TRAVAUX PRATIQUES (modules de 4 heures toutes les deux semaines)					
1	TP 1 – Introduction. Description de la plate-forme de laboratoire					
2	TP 2 – Filtres non- linéaires pour la restauration et amélioration des images	4 heures				
3	TP 3 – Filtres scalaires de type EDP	4 heures				
4	TP 4 – Filtres tensoriels de type EDP. Approches directionnelles	4 heures				
5	TP 5 – Approches de type fast marching et level-set. Segmentation en utilisant les 4 heures					
	contours actifs					
6	TP 6 - Technique de inpainting pour la restauration des images. 4 heures					
7	Restauration et amélioration des séquences vidéo. Présentation et soutenance des 4 heures					
	minis projets.					
B2.	B2. Salle de TP 210 A Dorobanților 71-73					

C. Etude individuelle										
miniprojet -	miniprojet - application en C/C++, article scientifique									
Etude	Etude Etude Tutoriaux TPs Epreuve Miniprojets Total									
individuelle cours écrite										
Temps	14	-	14	3	53	74				
[heures]										

Références

- 1. Al Bovik "Handbook of Image and video coding", Academic Press, 2000.
- 2. G. Shapiro "Geometric partial differential equations and image analysis", Cambride University Press, 2001
- 3. J.R Parker "Algorithms for image processing and computer vision", John Wiley and sons, 1997
- 4. S. Mitra, G. Sicuranza "Nonlinear image processing", Academic Press, 2001
- 5. S.Osher, N. Paragios- "Geometric Level Set Methods in Imaging, Vision and Graphics", 2003
- 6. J.P. Coquerez, S. Philipp Analyze d'images Filtrage et segmentation, Masson, 1995
- 7. Romulus Terebes Diffusion directionnelle. Applications à la restauration et à l'amélioration d'images de documents anciens. Thèse de doctorat, Université Bordeaux 1 http://grenet.drimm.u-bordeaux1.fr/pdf/2004/TEREBES ROMULUS MIRCEA 2004.pdf
- 8. David Tscumperlé Régularisation d'Images Multivaluées par EDP et Applications. Thèse de doctorat, Université de Nice Sophia-Antipolis -
- http://tel.ccsd.cnrs.fr/documents/archives0/00/00/23/96/index.html
- 9. Support de cours format électronique : http://ares.utcluj.ro/tapisv_2010.html

Examination						
Mode d'examination	Epreuve écrite sans documents(3 heures)					
Composantes de la						
note finale	Mini projet M (M); Examen (E)					
Formule de calcul de						
la note finale	N=0,6E+0,4M si E>4					

Titulaire du cours

MdC. Romulus Terebes